You need to test, we're here to help.

You need to test, we're here to help.
Showing posts with label dynamic range. Show all posts
Showing posts with label dynamic range. Show all posts

21 February 2022

9 Important Things to Know When Making Sensitive Measurements with Oscilloscopes

We've routinely posted on how you can characterize your total measurement system to gain important "situational awareness" when using an oscilloscope to make sensitive measurements. The knowledge gained from these tests helps you properly interpret your measurement results so that you can deduce what is actually going on with your circuit, versus what is an artifact of the measurement system. Listed here are nine important things you should know before making sensitive measurements with your oscilloscope, with links to blog posts that instruct you how to test them.

01 June 2021

Five Tips to Improve Dynamic Range

Dynamic range is the ratio of the maximum signal level to the smallest signal level achievable in a measurement.  Tools with good dynamic range are especially helpful for analyzing wide dynamic range signals in which a full-scale signal must be acquired, while at the same time, very small amplitude signal details must be visible. Here are five tips for improving the dynamic range of your measurement instrument.

06 July 2020

Probe Safety Demystified: Dynamic Range and Voltage Swing

One of the most basic things to know when using any probe is “what is the maximum voltage the device can safely measure?” The answer isn’t as straightforward as you might imagine, it requires understanding several key probe specifications as well as the nature of your signal.

Single-ended Range

Single-ended range is maximum voltage input to ground.
Figure 1. Single-ended range is
measured voltage input to ground.
Everyone is pretty familiar with single-ended range: that's the maximum safe voltage input to ground, shown in Figure 1. Ground is directly tied to oscilloscope ground, which is tied to building ground. Therefore, when measuring voltage within this range using a single-ended probe, the ground connection cannot be a floating voltage, or you could damage the probe, the DUT, the oscilloscope...maybe yourself, as well. Single-ended voltage must be a grounded voltage on your board or something that could be tied to ground.

08 February 2018

Probing Techniques and Tradeoffs (Part VIII): Gain/Attenuation vs. Noise

Noise comparison of a Teledyne LeCroy D1605 probe and a competing model
Figure 1: Noise comparison of a
Teledyne LeCroy D1605 probe and
a competing model
When discussing oscilloscope probes and dynamic range as we've been doing of late, we must also touch upon the associated topics of internal gain/attenuation and how that relates to noise.

06 February 2018

Probing Techniques and Tradeoffs (Part VII): More on Dynamic Range

Input offset range is how much differential offset a probe can apply to an input signal to bring it within its differential-mode output range
Figure 1: Input offset range is how much
differential offset a probe can apply to
an input signal to bring it within its
differential-mode output range
In our last post in this series, we'd begun discussing the third of three types of dynamic range as applied to probes, and that is input offset range. This is the maximum differential offset that a probe can apply to the input signal to bring it within the probe's differential-mode dynamic range.

26 January 2018

Getting The Most Out Of Your Oscilloscope: Setup

Choosing a effective sample rate is key to seeing the finer details of a waveform
Figure 1: Choosing a effective sample rate is key
to seeing the finer details of a waveform
Today's real-time digital oscilloscopes are so packed with bells and whistles (or "features," if you prefer) that you can forget how to use many of them. In fact, you might not even realize some exist! But they're all there for a reason, and they're all useful, maybe even more so than you know. To that end, we'll take a tour of a typical Teledyne LeCroy oscilloscope's features and give you some pointers as to how, and when, you can best take advantage of them.

04 January 2018

Probing Techniques and Tradeoffs (Part VI): Dynamic Range

Differential-mode dynamic range is the maximum allowable voltage between the probe amplifier's inputs
Figure 1: Differential-mode dynamic range is the maximum
allowable voltage between the probe amplifier's inputs
We've been discussing probe loading, which is the unavoidable reality of what happens when you attach an oscilloscope probe to a live circuit. We'll now shift the discussion to dynamic range, an important topic that can be overlooked when selecting an oscilloscope probe. There are three types of dynamic range that one should understand. Each of them will influence how you set up your probe and how you set up your signal under test to most effectively get that signal into the oscilloscope's front-end amplifier.

20 November 2017

Probing Techniques and Tradeoffs (Part II)

A snapshot of available probes from Teledyne LeCroy
Figure 1: A snapshot of available probes from
Teledyne LeCroy
Our first post in this series concentrated on connectivity and various means by which one might apply an oscilloscope probe to a circuit or device under test. Now, we'll look at an "ideal" probe vs. a real-world probe, and then begin a discussion of probe specifications.