You need to test, we're here to help.

You need to test, we're here to help.

28 April 2021

Debugging Automotive Ethernet Transmitter Output Droop

Everyone manufacturing devices used for Automotive Ethernet knows what compliance limits they must meet, based on the electrical test specification, but it is not always obvious where to look for the source of the problem when a compliance test fails. We'll provide more Automotive Ethernet debugging tips in future posts, but here is one that arose from a reader's question: namely, why the 45% limit on output droop for 100Base-T1, and what might cause the problem?
Figure 1: Automotive Ethernet electrical testing is performed at the transmitter connector and is largely governed by channel/connector recommendations.  Between the transmitter and the connector is a Low-Pass Filter and a Common Mode Choke both affecting signal droop.

12 April 2021

How to Use Measurement Statistics to Set Up Triggers

Figure 1.  Histogram of the different pulse widths occurring
in a pulse-width modulated rectangular pulse train.
Triggering is an essential element in all modern digital oscilloscopes.  The trigger synchronizes the oscilloscope’s data acquisition with a user-specified event on the signal, be that an edge, threshold crossing or a specific signal characteristic. Teledyne LeCroy Smart Triggers can trigger oscilloscope acquisitions based on properties such as a period, width, low signal amplitude, slew rate or signal loss. These trigger types are ideal for capturing transient events like glitches, but they require knowing at least a range of possible values for the trigger to detect.

Intermittent transient events and glitches are among the most frustrating problems to detect and solve. This is especially true if you have no idea about the nature of the transient. However, you can use the oscilloscope’s measurement tools to help locate these bothersome transients, then use that information to set up your trigger to capture them when they occur. Here’s how.

05 April 2021

How to Test the CMRR of Differential Probes

Figure 1: CMRR plots for two attenuation
settings of an HVD3106A differential probe.
While recently we told you not to connect two probes to the same place at the same time, there is a case where connecting two tips of a differential probe to the same place at the same time is useful, and that is when testing the probe’s common mode rejection ratio (CMRR). CMRR is frequency dependent, so part of developing “situational awareness” of your test environment is to know how your probe behaves with different signals at different frequencies. 

Although CMRR as a function of frequency is a principal specification for differential probes, manufacturer's CMRR plots are the result of testing with a narrowband source under strictly controlled laboratory conditions. In real-world applications of probes to broadband sources, you can expect a different result. This quick test will inform you how different.