You need to test, we're here to help.

You need to test, we're here to help.
Showing posts with label skin effect. Show all posts
Showing posts with label skin effect. Show all posts

16 January 2023

Signal Return Paths: A Signal and Power Integrity Tutorial

Figure 1. Current distribution in the signal and return conductors at three different frequencies. The current redistribution at higher frequency is driven by the currents taking filament paths with the lowest loop inductance.
Figure 1. Current distribution in the signal and
return conductors at three different frequencies.
The current redistribution at higher frequency
is driven by the currents taking filament paths
with the lowest loop inductance. 
The following is excerpted from Professor Eric Bogatin's article in the Signal Integrity Journal, The Case for Split Ground Planes. Reprinted by permission of Signal Integrity Journal.

. . .

Why Continuous Return Path Planes

The first step in engineering interconnects to reduce noise is to provide a continuous, low impedance return path to control the impedance, which controls reflection noise, and reduce the cross talk between signals that also share the same return conductor. 

A wide, continuous ground plane adjacent to a signal trace will be the lowest cross talk configuration. Anything other than a wide plane means more cross talk between signal paths sharing this return conductor. This means, never add a split or gap in the return path. You would run the risk of a signal trace inadvertently crossing this discontinuity.

If a signal crosses over a split ground plane, there are two effects which compound each other. Crossing a split creates a higher impedance path for return currents that must cross the split and forces return currents from multiple signals to overlap through the same, higher impedance, common path. 

06 June 2018

A Look at Transmission-Line Losses

Using a 3D field solver to simulate a differential trace
Figure 1: Using a 3D
field solver to simulate
a differential trace
In surveying the subject of debugging high-speed serial data links, we've noted that there's no one cause for signal-integrity issues between transmitter and receiver, and there's certainly no one solution. But let's begin with the low-hanging fruit: electrical losses in the transmission line. We've previously done a series of posts on transmission lines (beginning here), but it's worth it to have a quick refresher.