You need to test, we're here to help.

You need to test, we're here to help.
Showing posts with label aliasing. Show all posts
Showing posts with label aliasing. Show all posts

06 August 2015

Why High Oscilloscope Sampling Rates Matter

Figure 1: Here is an example of aliasing that results from sampling a signal at less than the Nyquist rate of 2fmax
Figure 1: Here is an example of aliasing that results from
sampling a signal at less than the Nyquist rate of 2fmax
A key to accurate measurements with an oscilloscope is to ensure that the instrument maintains a high sampling rate. This applies to most measurements; conversely, for many measurements, accuracy may suffer as sample rate decreases. In the worst case, some signal components may be "aliased," meaning that the true signal shape is corrupted by the addition of bogus signal components that arise from undersampling of real signal components.

09 April 2014

Applying Multi-Stage, Multi-Rate Digital Filtering

63-kHz signal with 60-Hz component
Figure 1: The input signal shows both the desired 63-kHz signal
along with a 60-Hz component. Zoom trace Z1 shows the
60-Hz component in detail.
A while back, we posted some basics on how to apply digital filters to sort out signals with undesirable elements riding on top of them, i.e. a square wave that's being corrupted by a sinusoidal signal creeping in from somewhere in your system design. Now, let's look at how to extend the range of cutoff frequencies for digital filters, allowing them to be used even more effectively.