You need to test, we're here to help.

You need to test, we're here to help.
Showing posts with label testing power supply with oscilloscope. Show all posts
Showing posts with label testing power supply with oscilloscope. Show all posts

19 July 2021

How to Test Noisy Power Supply Outputs

Figure 1: 3.3 V output of a DC-DC converter. The waveform shows the nominal DC level, ripple and high frequency noise bursts.
Figure 1: 3.3 V output of a DC-DC converter.
The waveform shows the nominal DC level,
ripple and high frequency noise bursts.
Did you ever acquire the output of a power supply with your oscilloscope and find an unexpectedly high level of noise? Did you try adding filter capacitors only to find the noise level was not changed? 

In this post, we'll discuss how the choice of probe affects the noise present in power measurements, as well as how oscilloscope settings such as termination impedance, bandwidth and coupling can be adjusted to lessen noise and improve measurement results.

Figure 1 shows a typical DC-DC converter output measurement. The mean value of the waveform is 3.294 V.  Ripple appears at the switching frequency of 1.2 MHz, and noise in the form of high frequency bursts and baseline thickening is visible throughout.

Waveforms like this can be acquired with a 10:1 high impedance probe, a 1:1 coaxial cable connection, or a 1.2:1 rail probe using either DC or AC coupling, as available.  Figure 2 summarizes how each oscilloscope/probe configuration affects the measurement.