Figure 1: Shown at top right is the output of a 5V switch-mode power supply acquired with an RP4030 active voltage-rail probe |
Now let's look at a real-world example of an FFT acquisitions. First, we'll acquire the output signal from a simple 5-V switch-mode power supply using a Teledyne LeCroy RP4030 active voltage-rail probe (Figure 1). The power supply is drawing about 100 mA. The WavePro HD oscilloscope is set for 200 mV/division, and the acquisition reveals some switching noise as well as other noise. The horizontal timebase is at 1 ms/division. We can surmise that there are perhaps two or three cycles per millisecond, which extrapolates to a switching frequency of about 3-4 kHz for the power supply. Thus, we will be looking at low-frequency noise.
Figure 2: At top center is the frequency-domain plot of the power supply's output waveform with averaging. |
We noted that, as expected, most of the noise was at low frequencies, but we'd like to get a better look at what's happening at higher frequencies. Figure 2 only spans up to 500 kHz, so we'll tell our spectral analysis function to look at a frequency range of up to 10 MHz. That will automatically tell the oscilloscope to increase the sampling rate from 2.5 MS/s to 50 MS/s. The resolution stays the same, so our timebase remains at 1 ms/division, giving us 500 kS of data.
Figure 3: Opening up the top frequency to 10 MHz reveals a large amount of noise in the 2-3 MHz range |
Next, we can change the upper limit of our FFT to 1 GHz while also decreasing the resolution so as not to have quite so many data points. What we find is that most of the noise is in the range of 100 MHz and below. Additionally, that noise peaks out at about -30 dBmV, or about 30 µV, which is a rather trivial amount.
Figure 4: A final 100-MHz-wide look at our 5-V power supply output shows a 1-mV peak at about 16 MHz |
look (Figure 4). Bear in mind, again, that this is 30 µV of noise on a 5-V rail. Other than the preponderance of noise in the 2-3 MHz, range, the largest peak, at about 16 MHz, is roughly at a 1-mV level. A number of spurious peaks appear at higher frequencies as well.
Note that we can control the spectrum analyzer by manipulating the highest frequency in the spectrum and the resolution. Those parameters, in turn, automatically control the oscilloscope's horizontal timebase and acquisition rate. But from our example, it's clear that looking at a signal in the frequency domain gives us a great deal of information about it that we simply cannot get from the time-domain view.
Previous posts in this series:
Getting From the Time Domain to the Frequency DomainAbout Data Truncation in Fast Fourier Transforms
No comments:
Post a Comment