You need to test, we're here to help.

You need to test, we're here to help.
Showing posts with label mode conversion. Show all posts
Showing posts with label mode conversion. Show all posts

21 June 2021

Automotive Ethernet MDI S-parameter Testing

Figure 1: MDI S-parameter tests treat the Base-T1 pair as a balance transmission line and check that reflections don't cause either excessive power loss or mode conversion that can disrupt the signal.
Figure 1: MDI S-parameter tests treat the Base-T1
pair as a balance transmission line and check that
reflections don't cause either excessive power loss
or mode conversion that can disrupt the signal.
As said earlier, the automotive industry has very stringent EMC/EMI requirements, and all Automotive Ethernet standards are designed to ensure good operation even in the presence of high EMI. Not only is there the potential for interference from all the different electronic systems within the vehicle, nothing is stopping you from parking your vehicle below high-voltage transmission wires or in other high EMI fields. 

For this reason, all Automotive Ethernet standards have defined S-parameter tests to be performed at the Medium Dependent Interface (MDI). The assumption is that the single twisted pair that is the basis for all Base-T1 transmissions can be treated as a balanced, differential transmission line with some crosstalk. It is a very real-world application of S-parameters, which can seem so academic.

Two, mixed-mode S-parameters are measured at the MDI reference plane. The tests ensure that there is neither too much loss of power from reflections, nor too much mode conversion into differential signal, that it will disrupt the information of the PAM3 encoded signal.

24 May 2021

Mode Conversion

Figure 1: The lower-left and upper-right quadrants of this matrix show the S-parameters that represent mode conversion from differential to common signal, and vice versa.
Figure 1: The lower-left and upper-right quadrants of this
matrix show the S-parameters that represent mode conversion
from differential to common signal, and vice versa.
As said earlier, mixed-mode S-parameters describe the general case of combinations of differential and common signals. When we speak of mode conversion in mixed-mode S-parameters, we are referring to the change of a differential signal into a common signal, or a common signal into a differential signal, as it travels the transmission line. If we look at the matrix of mixed-mode S-parameters in Figure 1, we see that those mixed mode S-parameters affected by such a mode conversion—with a different type of signal going out than what went in—are in the lower-left and upper-right quadrants.  

Let’s take the S-parameters SCD11 and SCD21 to see how the combination of single-ended S-parameters they represent reveal the source of mode conversion. If we look at SCD11, the reflected mode conversion, as a function of its single-ended S-parameters, we see:

05 June 2018

Introduction to Debugging High-Speed Serial Links

These images depict the degradation of serial data traffic as it makes its way from transmitter to receiver
Figure 1: These images depict the degradation of serial data
traffic as it makes its way from transmitter to receiver
In recent years, the data rates in serial links have increased exponentially across any number of standard protocols, including PCI Express, USB, and even SATA and SAS. With higher data rates comes more challenges for system designers, validation engineers, and test engineers with respect to signal integrity (SI). Some SI effects are much more prominent at higher data rates than they were for lower-speed versions of the same protocols. In this series of posts, we'll examine these SI effects, look at some methods of improving system performance, and discuss some SI analysis solutions as well as measurement considerations.