You need to test, we're here to help.

You need to test, we're here to help.

29 June 2017

Distinguishing BroadR-Reach and 100Base-T1

BroadR-Reach provides full-duplex operation over a single twisted pair of wires
Figure 1: BroadR-Reach provides full-duplex operation
over a single twisted pair of wires
The world of Automotive Ethernet can be a little confusing in that there are two dominant specifications that serve the application space: BroadR-Reach and 100Base-T1. Both are explicitly intended for automotive use and there's quite a bit of overlap between them. In this installment, we'll look a little more closely at BroadR-Reach applications and also explain the differences between it and 100Base-T1.

27 June 2017

The Basics of Automotive Ethernet Testing

Automotive Ethernet PHY test requires 1-GHz bandwidth and 2-GS/s sample rate minimum
Figure 1: Automotive Ethernet
PHY test requires 1-GHz bandwidth
and 2-GS/s sample rate minimum
Now that we've discussed what Automotive Ethernet is all about, discussed its benefits, and dug deeper into BroadR-Reach, the next topic for discussion is an overview of testing for the protocol and the equipment requirements to test the physical layer.

20 June 2017

VIDEOS: Exploring MAUI with OneTouch

MAUI with OneTouch makes child's play of complex oscilloscope operations
Figure 1: MAUI with OneTouch makes
child's play of complex oscilloscope
operations
If a picture is worth a thousand words, how many words is a video worth, even if it's only 10 to 15 seconds long? If the videos in question illustrate how to use Teledyne LeCroy's MAUI with OneTouch next-generation user interface (Figure 1), their value is inestimable. Once you've seen how easy it is to use an oscilloscope with MAUI with OneTouch, you'll know it was time well spent.

19 June 2017

Why Automotive Ethernet?

The MOST infotainment protocol offers a higher aggregate bandwidth than Automotive Ethernet, but its 150-Mb/s bandwidth is shared across the network
Figure 1: The MOST infotainment protocol offers a higher
aggregate bandwidth than Automotive Ethernet, but its 150-Mb/s
bandwidth is shared across the network
In recent posts, we've been reviewing the subject of Automotive Ethernet in general and the BroadR-Reach protocol in particular. In today's installment, let's look at some of the benefits of using the protocol while comparing it to some other protocols that see usage in the automotive environment.

14 June 2017

Fundamentals of the BroadR-Reach Protocol

BroadR-Reach delivers bandwidth of 100 Mb/s
Figure 1: BroadR-Reach
delivers bandwidth of
100 Mb/s
The burgeoning complexity of vehicular networks, the resultant high bandwidth demands, and the harshness of the automotive environment have driven the development of what we know today as Automotive Ethernet. Our last post began an overview of Automotive Ethernet technology, focusing on the physical/mechanical constraints and industry trends that influenced the protocol's development. Next, let's look more closely at the BroadR-Reach protocol.

12 June 2017

Back to Basics: Automotive Ethernet

Figure 1: Automotive Ethernet handles
a wealth of functionality
Today's vehicles are as networked, if not more so, than our homes, offices, and factories. According to one estimate, the wiring harness for a multiplexed bus in a high-end luxury vehicle can weigh as much as 110 lbs. Hence the rise of standards for automotive networking such as Automotive Ethernet (Figure 1). Let's begin a survey of the basics of Automotive Ethernet: What is it, where did it come from, where is it going, and what are the testing requirements?